PENENTUAN BATAS TEPI DANAU PAPARAN BANJIR SECARA HITUNG PERATAAN KUADRAT TERKECIL DENGAN MULTIDATA PENGINDRAAN JAUH

Atriyon Julzarika, Esthi Kurnia Dewi, Luki Subehi

Abstract


Nowadays, technology and remote sensing data have developed significantly. These developments started with conventional data to become dynamic data. Technology and remote sensing data can be used for various applications such as mapping of inland water. Inland water resources that include lakes, rivers, and swamps are one of the national priorities, especially in lake mapping. One of the problems with floodplain lakes is that it is difficult to determine the fixed boundaries of the lake surface area. This study aims to obtain a forensic geological boundary mapping of a lake using the least-square adjustment approach in a floodplain lake with multi-data remote sensing. The floodplain lake in this study was Mahakam Cascade Lake in East Kalimantan Province. The fixed boundary of the surface area of the lake was determined using the least-square adjustment approach. One method in the adjustment was the harmonic modeling algorithm. This mapping used multi-data remote sensing in the form of Synthetic Aperture Radar (SAR) and optical imagery. The imagery used was Sentinel-1 which was acquired from 2014 to 2018 and Landsat from 2014 to 2018. This algorithm showed that the fixed boundaries of Mahakam Cascade Lake can be determined with certain tolerances. These fixed boundaries ignored lake tide parameters because the maximum tide value in the lake was only +5 cm. This value was ignored because the vertical accuracy of the topographic data in the big data engine was about 2 m. The fixed delineation of lake edges can be used to determine the lake volume and surface area. The surface area of the lake obtained from the Sentinel-1 imageries was ~ 399,017 km2. Based on Landsat imageries, the surface area of the lake was ~ 399,495 km2. The difference was due to the mixing of sediments and thin turbidity at the edge of the lake. This condition caused differences in reflectance values when acquisitioning the two types of imageries. Basically, this method could be applied for determining the edge of a lake.

Keywords


floodplain lake, big data engine, least-square adjustment, fixed delineation of lake, harmonic modeling

Full Text:

PDF

References


Adjei, Z. Y. 2015. Using Remote Sensing to Explore the Time History of Emergent Vegetation at Malheur Lake, Oregon. Theses. Department of Civil and Environmental Engineering, Brigham Young University.

Asdak, C. 2014. Hidrologi dan Pengelolaan Daerah Aliran Sungai. Gadjah Mada University Press, Yogyakarta.

Artis, M., Clavel, J. G., Hoffmann, M. and Nachane, D., 2007. Harmonic Regression Models: A Comparative Review with Applications. Institute for Empirical Research in Economics University of Zurich. Working Paper Series ISSN 1424-0459.

Bradley, B.A., Jacob, R. W., Hermance, J.F., and Mustard, J. F., 2007. A curve fitting procedure to derive inter-annual phenologies from time series of noisy satellite NDVI data. Remote Sens. Environ., 106 (2) pp. 137-145, 10.1016/j.rse.2006.08.002

Brezonik, P. L., Kloiber, S. M., Olmanson, L. G., dan Bauer, M. E,. 2002. Satellite and GIS Tools to Assess Lake Quality. Water Resources Center, Technical Report 145, May 2002.

Canty M. J. 2010. Image Analysis, Classification and Change Detection in Remote Sensing, With Algorithms for ENVI/IDL, Second edition. Taylor and Francis, CRC Press.

Coppin, P., Jonckheere, I., Nackaerts, K., dan Muys, B. 2004. Digital change detection methods in ecosystem monitoring: A review. International Journal of Remote Sensing, 25(9), 1565−1596.

Doxaran, D., Froidefond, J. M., and Castaing, P. 2002. A Reflectance Band Ratio Used to Estimate Suspended Matter Concentration in Sediment-dominated Coastal Waters. Int. J. Remote Sensing, 23 ( 23): 50795085.

eCognition, 2016. Reference Book: Definiens Professional version 5.0.6.2. Defineiens AG. München, Germany.

ESA, 2018. Sentinel Satellite. ESA. Belanda.

Freeden, W. et al., 2010. Handbook of Geomathemathics. Springer. ISBN: 9783642015465

Gillani, C, dan Wolf, 2006. Adjustment Computation: Spatial Data Analysis. John Wiley and Sons, Inc., Hoboken, New Jersey. Amerika Serikat.

GEE, 2018. Google Earth Engine. Google. Amerika Serikat.

Geerken, R. A., 2009. An algorithm to classify and monitor seasonal variations in vegetation phenologies and their inter-annual change. ISPRS J. Photogramm. Remote Sens., 64 (4) (2009), pp. 422-431, 10.1016/j.isprsjprs.2009.03.001

Honda, K. L. Samarakoon, A. Ishibashi. Y. Mabuchi. And S. Miyajima. 1996. Remote Sensing and GIS technologies for denudation estimation in Siwalik watershed of Nepal. p. B21-B26. Proc. 17th Asian Conference on Remote Sensing, Colombo, Sri lanka. 4-8 November 1996.

Hermance, J. F., 2007. Stabilizing high-order, non-classical harmonic analysis of NDVI data for average annual models by damping model roughness. Int. J. Remote Sens., 28 (12), pp. 2801-2819, 10.1080/01431160600967128.

Kartika, T., Trisakti, B., dan Suwargana, N., 2015. Pemanfaatan Data Penginderaan Jauh Landsat-8 untuk Mengamati Nilai TSS dan Kecerahan Perairan Danau Toba, Sumatera Utara. Prosiding Sinasinderaja 2015. Jakarta.

Kemenkumham, 1996. UU No. 6 Tahun 1996 tentang Perairan Indonesia. Kemenkumham, Jakarta.

KLH (Kementerian Lingkungan Hidup), 2008. Pedoman Pengelolaan Ekosistem Danau. Kementerian Lingkungan Hidup, Jakarta.

KLH (Kementerian Lingkungan Hidup), 2011. Profil 15 Danau Prioritas Nasional 2010-2014. Kementerian Lingkungan Hidup, Jakarta.

Kumay, D. U., 2015. Remote sensing platforms and sensor. NBKRIST Vidyanagar. India.

Li, R. dan Li, J., 2004. Satellite Remote Sensing Technology for Lake Water Clarity Monitoring: An Overview. International Society for Environmental Information Sciences, Environmental Informatics Archives, 2 :893-901.

LIPI, 2018. Limnologi LIPI. http://www.limnologi.lipi.go.id/aboutus.php?id=2. diakses juli 2018.

Liu, J., Hirose, T., Kapfer, M. and Bennett, J., 2007. Operational Water Quality Monitoring Over Lake Winnipeg Using Satellite Remote Sensing Data. Our Common Borders – Safety, Security, and the Environment Through Remote Sensing, October 28 – November 1, 2007, Ottawa, Ontario, Canada.

Liang, S., 2004, Quantitative Remote Sensing of Land Surface, New Jersey: John Willey and Sons Inc.

Mailard, P., Pivari, M. O., dan Luis, C. H. P., 2012. Remote Sensing for Mapping and Monitoring Wetlands and Small Lakes in Southeast Brazil. Open Journal Intech.

Marianthi, S., Eleni, C., dan Eleni, K., 2011. Monitoring Lake Ecosystems Using Integrated Remote Sensing / GIS Techniques: An Assessment in the Region of West Macedonia, Greece. DOI: 10.5772/27926. Open Journal Intech, ISBN 978-953-307-724-6.

Mostafa M.M. and Soussa H. K., 2006. Monitoring Of Lake Nasser Using Remote Sensing And Gis Techniques, ISPRS Commission VII Mid-term Symposium "Remote Sensing: From Pixels to Processes", Enschede, the Netherlands, 8-11 May 2006.

Powell, R., Brooks, C., French, N., dan Shuchman, R., 2008. Remote Sensing of Lake Clarity. Michigan Tech Research Institute (MTRI), May 2008.

Pratisto, A., dan Danoedoro, P., 2008. The impact of land use changes against flood discharge and flood hazard (case study in Gesing Watershed, Purworejo, based on Landsat TM and ASTER VNIR image. Proceedings of the Annual Scientific Meeting of the Indonesian Remote Sensing Soceity (PIT-MAPIN), Bandung.

Priasty, E. W., 2014. Analisis Dampak Perubahan Penggunaan Lahan Terhadap Daerah Aliran Sungai di Kabupaten Bengkulu Utara, Jurnal Bengkulu Mandiri. Bengkulu.

Pye, K. dan Croft, D. J., 2004. Forensic Geoscience: Principles, Techniques and Applications. Geological Society, London, Special Publications, 232, 1-5. 9 The Geological Society of London.

Soeta’at., 1996, Hitung kuadrat terkecil lanjut, Geodesy and Geomatics Engineering, University of Gadjah Mada, Yogyakarta.

Suroso dan Susanto H.A., 2006. Pengaruh Perubahan Tata Guna Lahan Terhadap Debit Banjir Daerah Aliran Sungai Banjaran, Jurnal Teknik Sipil, Vol. 3, No. 2.

Trisakti, B., 2013. Kajian Penentuan Luas Danau dan Sebaran Vegetasi Air dengan Metoda Penginderaan Jauh, Jurnal Limnotek, 20 (1): 10-20.

Trisakti, B., Suwargana, N., dan Cahyono, J. K., 2014. Pemanfaatan Data Penginderan Jauh Untuk Memantau Parameter Status Ekosistem Perairan Danau (Studi Kasus: Danau Rawa Pening). Seminar Nasional Penginderaan Jauh Nasional 2014.

Trisakti, B., Julzarika, A., dan Dewi, E. K., 2016. Pemanfaatan Standar Pemanfaatan Data Penginderaan Jauh Untuk Pemantauan Perubahan Lahan. Laporan kegiatan pusat pemanfaatan penginderaan jauh, LAPAN, Jakarta.

United Nation (UN), 1982. UNCLOS 1982. United Nation.

United States of Geological Survey (USGS), 2018. Landsat Mission. USGS. https://landsat.usgs.gov/. diakses Juli 2018. Amerika Serikat.

Wolf, P.R., 1981, Adjustment Computations: (practical least square for surveyors), 2nd edition, Institute Technology of Bandung, Bandung.

Zimmerman, D. L. dan Cressie, N, 1992. Mean squared prediction error in the spatial linear model with estimated covariance parameters. Annuals of the Institute of Statistical Mathematics 44: 27-43.


Refbacks

  • There are currently no refbacks.


PUBLISHED IN COLLABORATION WITH

Masyarakat Limnologi Indonesia

ABSTRACTED/INDEXED BY

Google Scholar ISJD LIPI Indonesia OneSearch Sinta Indonesia Garuda Indonesia


Copyright &copy 2015-2018, LIMNOTEK. All Rights Reserved. Powered by OJS.